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A molecular theory of time-resolved sum-frequency generation (SFG) has been developed. The theoretical
framework is constructed using the coupled-oscillator model in the adiabatic approximation. This theory can
treat not only the vibrational spectroscopy but also vibrational dynamics. An application of this theory is also
provided for estimation of the time constants of the intermolecular vibrational energy transfer between water
molecules. This approach can be used for molecular analysis of the experimental results of Shen at al. on the
SFG studies of vibrational dynamics of water.

1. Introduction

Molecular theory for various kinds of sum-frequency genera-
tion (SFG) has been developed. However, few theoretical
treatments for time-resolved SFG have been reported. Recently,
Shen et al.1 have reported the femtosecond time-resolved
vibrational IR-UV SFG for studying the vibrational dynamics
of water surface molecules. In this paper, we shall report a
molecular theory of femtosecond time-resolved IR-UV SFG.

Although numerous MD calculations have been performed
to study the vibrational spectroscopy and dynamics of water,2-6

it still seems desirable to develop a theoretical model that can
be used to analyze the experimental data of spectroscopy and
dynamics of water. For this purpose, in this paper we divide
the whole water system into the vibron (intramolecular vibra-
tions) system and the phonon (librations and intermolecular
vibrations) bath. The interactions among different vibrational
modes are described by anharmonic couplings and the adiabatic
approximation is introduced as a basis set. In vibrational spectro-
scopy, we show how to calculate the spectral shift, intensity of
phonon-side bands, temperature effect, and vibration band-shape
functions. In vibrational dynamics, we show how to calculate
the vibrational excitation energy transfer between different water
molecules and the vibrational relaxation due to one-vibron
processes, two-vibron processes, and three-vibronic processes.

The present paper is organized as follows. In section 2 we
briefly present the molecular theory of time-resolved SFG, which
will be followed by the description of a coupled oscillator model
applied to vibrational spectroscopy and vibrational dynamics
(section 3). The applications of the theory to estimate the time
constants for the intermolecular energy transfer are given in
section 4.

2. General Theory

Let us consider a model for the pump-probe vibrational IR-
UV sum-frequency generation experiments in which an IR-pump
laser beam is applied to a sample and, with time delay∆t, other
IR and UV laser beams are sent to the sample to generate IR-
UV SFG. In this case, we start with7-10

where PBpump
SFG (∆t) represents the nonlinear polarization vector

due to the probing lasers in the presence of the pump laser,
〈‚‚‚〉 denotes the average over the heat-bath modes and orienta-
tion configurations of the molecules, andêSFG represents the
polarization unit vector for the vibrational IR-UV SFG signal
detection. On the basis of density matrix method,11 the nonlinear
polarizability for pump-probe vibrational IR-UV can be
expressed as

wherePBpump
SFG (l,∆t) stands for the nonlinear polarization vector

on the molecule at the positionRBl and ∆kB ) kBs - kB1 - kB2.
Substituting eq 2-2 into eq 2-1 and ignoring the incoherent
scattering, that is,l ) l′, yield

where
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I(∆t) ∼ 〈|êSFG‚PBpump
SFG (∆t)|2〉 (2-1)

PBpump
SFG (∆t) ) ∑

l

PBpump
SFG (l,∆t)ei∆kB‚RBl (2-2)

I(∆t) ∝ ∑
l*l′

〈{êSFG‚PBpump
SFG (l′,∆t)}*{êSFG‚PBpump

SFG (l,∆t)}ei∆kB‚RBll ′〉 (2-3)

PBpump
SFG (l,∆t) ) Tr[(êSFG‚µb)σ̂(4)(t)] ) ∑

nn′
(êSFG‚µbnn′)σ̂n′n

(4)(t)

) (-i)4∫ti

t
dτ1∫ti

τ1 dτ2∫ti

τ2 dτ3∫ti

τ3 dτ4 ×
∑
nn′

(êSFG‚µbnn′)〈〈n′n|L̃′(τ1) L̃′(τ2) L̃′(τ4) L̃′(τ3)|σ̂(ti)〉〉 (2-4)
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where µb denotes the electric dipole moment operator,σ̂(4)(t)
describes the fourth-order reduced density operator with respect
to the interaction between radiation field and the molecules,
andσ̂(ti) is the initial condition for the reduced density operator.
HereL̃′(τ1) is the so-called Liouvillian operator in the interaction
representation and〈〈n′n| ‚‚‚ |σ̂(ti)〉〉 denotes the double-index
Liouville space matrix element.

At the phase matching direction, only the molecular pair in
the bracket in eq 2-3 at a large distance can contribute to SFG
signals. In this case, we find

To grasp the essence, we assume that the IR pump-pulse and
SFG pulses can be approximated by rectangular pulses with
the respective pulse durationsTpumpandTSFG. In the rectangular
pulse approximation, the integrals can be divided into two time
ranges in eq 2-4 if no overlap between the SFG pulses and
pumping pulse is assumed and they are separated by∆t. In this
case, we find (see Appendices S1 and S2 in Supporting
Information)

where ∆ ) Tpump + ∆t and σ̂(ti) ) ∑
g

P(g)|gg〉〉, with P(g)
being the Boltzmann distribution function. In eq 2-6 the time
integrals overτ1 andτ2 lead to SFG responses and those over
τ3 andτ4 give the density matrix for the pumping prepared states.
We assume that the IR pumping process with a 130 fs laser
pulse cannot generate coherences between vibrationally excited
states of any high-frequency vibrational mode at 2800-3800
cm-1. In other words, the pumping process generates populations
in the vibrationally excited state g′ or in the vibrationally ground
state g. In this case, we find

where, for example,

and

HereFgg(∆t) andFg′g′(∆t) denote the time development of the
population in the vibrational ground state g and that in the
vibrational ground state g′, respectively, andFgg(Tpump) is
associated with the pumping condition (see Appendix S3 in the
Supporting Information).σegrgg

SFG (TSFG) in eq 2-8, for example,
can be approximately given by (see Appendices S4, S5, and

S6 in the Supporting Information)

The termsS12 andS22 in eq 2-7 are given in Appendix S5 in
the Supporting Information.

In this section, we have derived the time-resolved SFG for
studying the population dynamics of surface species. In this
paper, we are mainly concerned with the time-resolved IR-UV
SFG applied to studying the vibrational energy relaxation (VER)
of surface water. In this case,Fgg (or Fg′g′) in eqs 2-8 and 2-9
describes the time-dependent population of vibrational levels.
In the next section, we propose a model for vibrational energy
transfer, VER, and vibrational spectroscopy for liquid water.
Using the Born-Oppenheimer approximation, the vibrational
IR-UV SFG has been well treated (see refs 7-10).

3. Coupled Oscillator Model

Liquid water can usually be regarded as consisting of ice-
like structures (or clusters) and liquid-like structure (or clusters)
which have, in addition to the bending band, 1640 cm-1 and
theνO-H vibrational band of 3200 cm-1, respectively. For this
liquid-vapor interface, there exists the additional dangling-bond
structures (or clusters) that have a vibrational band around 3700
cm-1.1,12,13To treat the vibrational spectroscopy and dynamics
of water, we shall employ the coupled oscillator model; this is
reasonable because in the above-mentioned structures (or
clusters) the hydrogen-bonding network is formed between water
molecules, and the motion between cluster is slow compared
with the vibrational dynamics under consideration.

We consider a total system consisting of vibrons (intramo-
lecular vibrational modes) and phonons (external low-frequency
modes including librations). The Hamiltonian of the total system
can be expressed as

whereĤs andĤb denote the Hamiltonian for the vibron system
and the heat bath, respectively

andĤ′ is the interaction between the system and the heat bath.
For Ĥ′ we shall use the anharmonic

I(∆t) ∼

∑
l*l′

l arge

〈{êSFG‚PBpump
SFG (l′,∆t)}* 〉〈{êSFG‚PBpump

SFG (l,∆t)}〉ei∆kB‚RBll ′ (2-5)

〈{êSFG‚PBpump
SFG (l,∆t)}〉 ) ∑

nn′
(êSFG‚µbnn′) ×

∑
mm′

(-i)2∫0

TSFG dτ1∫0

τ1 dτ2 〈〈n′n|L̃′(τ1+∆) L̃′(τ2+∆)|mm′〉〉 ×

(-i)2∫0

Tpump dτ3∫0

τ3 dτ4 〈〈mm′|L̃′(τ3) L̃′(τ4)|σ̂(ti)〉〉 (2-6)

〈{êSFG‚PBpump
SFG (l,∆t)}〉 ) S11 + S12 + S21 + S22 (2-7)

S11 ) ∑
e

(êSFG‚µbeg)σegrgg
SFG (TSFG) Fgg(∆t) Fgg(Tpump)

(2-8)

S21 ) ∑
e

(êSFG‚µbeg′)σeg′rg′g′
SFG (TSFG) Fg′g′(∆t) Fg′g′(Tpump)

(2-9)

σegrgg
SFG (TSFG) ) (-i/p)2∑

g′′
(µbeg′′‚EBUV)(µbg′′g‚EBIR) ×

1

i(ω′g′′g - ωIR)

1

i(ω′eg - ωIR - ωUV)
(2-10)

Ĥ ) Ĥs + Ĥb + Ĥ′ (3-1)

Ĥs ) ∑
l

(12 P̂l
2 +

1

2
ωl

2Q̂l
2) (3-2)

Ĥb ) ∑
j

(12 p̂j
2 +

1

2
ωj

2q̂j
2) ) T̂q +

1

2
∑

j

ωj
2q̂j

2 (3-3)

Ĥ′ )
1

3!
∑

l
∑
j,k

( ∂
3V

∂Ql∂qj∂qk
)

0

Qlqjqk +
1

3!
×

∑
l,l′

∑
j

( ∂
3V

∂QlQl′∂qj
)

0

QlQl′qj +
1

3!
∑
l,l′,l′′

( ∂
3V

∂Ql∂Ql′∂Ql′′
)

0

QlQl′Ql′′ +

1

4!
∑

l
∑
i,j,k

( ∂
4V

∂Ql∂qi∂qj∂qk
)

0

Qlqiqjqk +
1

4!
×

∑
ll ′

∑
j,k

( ∂
4V

∂Ql∂Ql′∂qj∂qk
)

0

QlQl′qjqk + ‚‚‚ (3-4)
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We shall show that different terms in eq 3-4 play different roles
in vibrational spectroscopy and dynamics.

For basis sets, we shall employ the adiabatic approximation,14

i.e.,

and

The basis sets will be limited only to harmonic approximation
for the vibron system and phonon bath

and

where

and

Here, we use the following notations, for example,

3.1. Intermolecular Vibrational Energy Transfer. We first
consider the vibrational energy transfer between two molecules

D and A. In the dipole-dipole interaction15

whereε andε0 denote the dielectric constant of the media and
the permittivity of a vacuum, respectively, andRDA represents
the distance between the donor and acceptor molecules. Here
µbD

l andµbA
l′ are given by

Using the Fermi Golden rule

for (nD
l ) 1, nA

l′ ) 0) f (nD
l ) 0, nA

l′ ) 1), we obtain

The simplest case will be resonance energy transfer, i.e.,ωl )
ωl′, that is, the vibrational energy transfer of the same vibrational
mode between two molecules. In this case, eq 3-19 reduces to

whereΩDA describes the relative orientation between D and A,
and

Here γ10 denotes the dephasing rate constant associated with
the population decay and the pure dephasing. As in the electronic
energy transfer case, the vibrational energy transfer rate can be
expressed in terms of spectral overlap. This can be accomplished
as follows. For simplicity, we replace the LorenzianD(ωl′ -
ωl + ωV′V) by the delta functionδ(ωl′ - ωl + ωV′V)

and assume that|〈ΘnV|Θn′V′〉|2 ) |〈ΘnV|Θn′V′〉|D2 |〈ΘnV|Θn′V′〉|A2
andFnV

(b) ) [FnV
(b)]D[FnV

(b)]A. Then we can rewrite eq 3-19 as

ĤψnV(Q,q) ) EnVψnV(Q,q) (3-5)

ψnV(Q,q) ) Φn(Q,q) ΘnV(q) (3-6)

(Ĥs +
1

2
∑

j

ωj
2qj

2 + Ĥ′)Φn(Q,q) ) Un(q) Φn(Q,q)

(3-7)

(T̂q + Un(q))ΘnV(q) ) EnVΘnV(q) (3-8)

Φn(Q,q) ) ∏
l

Ìnl
(Ql) ΘnV(q) ) ∏

j

ønVj(Qj(n)) (3-9)

Un(q) ) ∑
l

(nl +
1

2)pωl +
1

2
∑

j

{ωj(n)}2{qj(n)}2 -

∑
j

1

2{ωj(n)}2 (∑
l

Vllj(Vl +
1

2) p

ωl
)2

+ Ĥ′′ (3-10)

{ωj(n)}2 ) ωj
2 + 2∑

l

Vlljj (Vl +
1

2) p

ωl

(3-11)

{qj(n)}2 ) qj
2 +

1

ωj
2
∑

l

Vllj(nl +
1

2) p

ωl

(3-12)

Ĥ′′ ) ∑
l

∑
j*k

VljkQlqjqk + ∑
l*l′

∑
j

Vll ′jQlQl′qj +

∑
l,l′,l′′

Vll ′l′′QlQl′Ql′′ + ∑
l

∑
i,j,k

VlijkQlqiqjqk +

∑
l

∑
j*k

VlijkQl
2qjqk + ∑

l*l′
∑
j,k

Vll ′jkQlQl′qjqk + ‚‚‚ (3-13)

EnV ) ∑
l

(nl +
1

2)pωl + ∑
j

(Vj +
1

2)pωj(n) -

∑
j

1

2{ωj(n)}2[∑l

Vllj(Vl +
1

2) p

ωl
] (3-14)

Vljk ) 1
3!( ∂

3V
∂Ql∂qj∂qk

)
0

(3-15)

Ĥ′VET ) 1

4πεε0RDA
3[(µbD

l ‚µbA
l′ ) -

3(µbD
l ‚RBDA)(µbA

l′ ‚RBDA)

RDA
2 ] )

|µbD
l ||µbA

l′ |
4πεε0RDA

3
ΩDA (3-16)

µbD
l ) ( ∂µb

∂Ql
)Ql µbA

l′ ) (∂µb′
∂Ql′)Ql′ (3-17)

WVET )
2π

p
∑

V
∑

V′
FnV

(b)|〈nV|Ĥ′VET|n′V′〉|2D(En′V′ - EnV) (3-18)

WVET )
2π

p2

1

(4πεε0)
2RDA

6|( ∂µb
∂Ql

)
0
|2|(∂µb′

∂Ql′
)

0
|2

|ΩDA|2( 1

4âlâl′
) ×

∑
V

∑
V′

FnV
(b)|〈ΘnV|Θn′V′〉|2D(ωl′ - ωl - ωV′V) (3-19)

WVET )
2π
p2

1

(4πεε0)
2RDA

6|( ∂µb
∂Ql

)
0
|2|(∂µb′

∂Ql′)0
|2|ΩDA|2( 1

4âlâl′) ×

D(ωl′ - ωl) (3-20)

D(ωl′ - ωl) ) 1
π

γ10

γ10
2 + (ωl′ - ωl)

2
(3-21)

δ(ωl′ - ωl + ωV′V) )

∫ dω [δ(ωl + ωV′V - ω)]D[δ(ω + ωV′V - ωl′)]A (3-22)

WVET )
2π

p2

1

(4πεε0)
2RDA

6|( ∂µb
∂Ql

)
0
|2|(∂µb′

∂Ql′
)

0
|2

|ΩDA|2( 1

4âlâl′
) ×

∫ dω [∑V
∑

V′

FnV
(b)|〈ΘnV|Θn′V′〉|2δ(ωl + ωV′V - ω)]D

×

[∑V
∑
V′

FnV
(b)|〈ΘnV|Θn′V′〉|2δ(ω + ωV′V - ωl′)]A

(3-23)
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which should be compared with the band-shape function

3.2. One-Vibron Relaxation. In this case, the vibrational
relaxation can be described bynl ) 1 f nl ) 0; that is, the
excitation energy of a vibron is directly relaxed into the phonon
bath. Using theĤ′′ given by

we obtain

or

This represents the case in which the one quantum excitation
energy of the vibron modeQl relaxes into the phonon modesqj

andqk with one quantum each and the rest of all phonon modes
whose the energy matches∆ ) pωj + pωk - pωl. Here the
summations can be replaced by an integral with the density of
stateF(Ej)

3.3. Two-Vibron Relaxation. Next we consider the case of
relaxation (nl ) 1, nl′ ) 0) f (nl ) 0, nl′ ) 1). In this case, we
can use

to obtain the rate of vibrational relaxation as

or

3.4. Three-Vibron Relaxation. This corresponds to the
process (nl ) 1, nl′ ) 0) f (nl ) 0, nl′ ) 2). Using

we obtain

or

It should be noted that eq 3-33 can also be expressed in terms
of spectral overlap.

Another possibility will be due to

This case can be treated similarly and will not be discussed
here.

3.5. Vibrational Spectroscopy.The quantum mechanical
expression for the absorption coefficient of vibrational spectra
has been given by eq 3-24. Notice that

and that the spectral band-shape function can be expressed as

where

wherenji denotes the phonon distribution function.
To show an application, we shall consider the theoretical

treatments of sidebands in vibrational spectroscopy. A typical
sideband in water can be described by (nl ) 0, Vj ) 0) f (nl )
1, Vj ) 1), that is a combination band;16,17its transition moment
is given by 〈(nl ) 0, Vj ) 0)|(∂µb/∂Ql)0Ql|(nl ) 1, Vj ) 1)〉.
Conventionally, it can be treated as follows. Due to the
anharmonic coupling, the state (nl ) 0, Vj ) 0) can couple with
the state (nl ) 0, Vj ) 1), and the state (nl ) 1, Vj ) 1) can

R(ω) )
4π2ω
3pc |( ∂µb

∂Ql
)

0
|2( 1

2âl
)∑V

∑
V′

FnV
(b)|〈ΘnV|Θn′V′〉|2 ×

δ(ωn′V′,nV - ω) (3-24)

Ĥ′′ ) ∑
l

∑
j*k

VljkQlqjqk (3-25)

WVET )
2π

p2 ∑
j,k

|Vljk|2
(Vjj + 1)(Vjk + 1)

8âlâjâk

×

∑
{Vm}

∑
{V′m}

∏
m

m*j,k

FVm

(b)|〈øV′m
|øVm

〉|2D(-ωl + ωj + ωk + ωV′V) (3-26)

WVET )
1

p2
∑
j,k

|Vljk|2
(Vjj + 1)(Vjk + 1)

8âlâjâk

∫-∞

∞
dt ×

exp[it(-ωl + ωj + ωk) - γ10|t|] ×

exp{ ∑
m

m*j,k

Sm[-(2njm + 1) + (njm + 1)eitωm + njme-itωm]} (3-27)

∑
j

f ∫ dEj F(Ej) (3-28)

Ĥ′′ ) ∑
j

Vll ′jQlQl′qj (3-29)

WVET )
2π

p2
∑

j

|Vll ′j|2
(Vjj + 1)

8âlâl′âj

×

∑
{Vm}

∑
{V′m}

∏
m

m*j

FVm
(b)|〈øV′m

|øVm
〉|2D(ωl′ - ωl + ωj + ωV′V) (3-30)

WVET )
1

p2
∑

j

|Vll ′j|2
(Vjj + 1)

8âlâl′âj

∫-∞

∞
dt ×

exp[it(ωl′ - ωl + ωj) - γ10|t|] ×

exp{∑
m

m*j

Sm[-(2njm + 1) + (njm + 1)eitωm + njme-itωm]} (3-31)

TABLE 1: Optimized Geometry of Single Water Molecule

atom xa ya za

O 0.000000 0.000000 0.117041
H 0.000000 0.763487 -0.468165
H 0.000000 -0.763487 -0.468165

a Unit of Å.

Ĥ′′ ) Vll ′l′QlQl′
2 (3-32)

WVET )
1

p2
|Vll ′l′|2

1

4âlâl′
2
×

∑
V

∑
V′

FV
(b)|〈Θn′V′|ΘnV〉|2D(2ωl′ - ωl + ωn′V′,nV) (3-33)

WVET )
1

p2
|Vll ′l′|2

1

4âlâl′
2
∫-∞

∞
dt exp[it(2ωl′ - ωl) - γ10|t|] ×

exp{∑
j

Sj[-(2njj + 1) + (njj + 1)eitωj + njje
-itωj]} (3-34)

Ĥ′′ ) ∑
j

Vll ′l′jQlQl′
2qj (3-35)

|〈ΘnV|Θn′V′〉|2 ) ∏
i

|〈ønVi
|øn′V′i

〉|2 (3-36)

R(ω) )
2πω

3pc |( ∂µb
∂Ql

)
0
|2( 1

2âl
) ∫-∞

∞
dt ×

exp[it(ωn′n - ω) - γn′n|t|] ∏
i

Gi(t) (3-37)

Gi(t) ) exp[Si{-(2nji + 1) + (nji + 1)eitωi + njie
-itωi}] (3-38)
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couple with (nl ) 0, Vj ) 1). We find

The transition moment for the fundamental transition is given
by

The intensity ratio between these two bands is given by

In liquid water, a sideband at 2150 cm-1 has been observed
and it has been attributed toδOH + γL whereδOH(bending))
1640 cm-1 and γL(librational mode)) 505 cm-1. From the
above discussion we can estimate the relative band-intensity of
this sideband to theδOH band.

Another well-known sideband is observed at 2530 cm-1,
which has been attributed toδOH - γL, whereδOH ) 3250 cm-1

and γL ) 720 cm-1. This sideband is a hot band and the
vibrational transition can be described by (VOH ) 0, VL ) 1) f
(VOH ) 1, VL ) 0). From eq 3-24 we can see that this band can
be described byFn,VL)1|〈Φn′)1|Ql|Φn)0〉|2|〈Θn′)1,V′)0|Θn)0,V)1〉|2.
Due toFn)0,V)1, this sideband intensity will be weaker compared
with the type discussed in the previous paragraph.

Similar to the electronic spectroscopy,|〈Θn′υ′|Θnυ〉|2 in eq
3-27 denotes the Franck-Condon factor. For example, for the
transition (nl ) 0, υj ) 0) f (nl ) 1, υj ) 1), the intensity ratio
between this transition and the transition (nl ) 0, υj ) 0) f (nl

) 1, υj ) 0) is given by

If we ignore the frequency change between the vibron states,
i.e., the displaced oscillator case,R takes the form

Using eq 3-12 for calculating∆qj(n) we can see that eq 3-43
reduces to eq 3-41. This shows that eq 3-24 can be used to
calculate vibration spectra of molecules in dense media.

4. Discussion

Vibrational spectroscopic and dynamic properties require
some of the fundamental properties of molecular systems, as

shown in the previous sections. For example, normal modes,
dipole moment derivatives, and anharmonic couplings are
needed to estimate rate constants or model spectroscopic
features. Quantum chemistry approaches could provide these
properties: however, it is practically impossible to treat a whole
water system. Here we shall treat water clusters and obtain
vibrational properties and anharmonic couplings of water
clusters (H2O)n with n ) 1, 2, ..., 8. We perform quantum
chemistry calculations by using Gaussian 0318 DFT at the
B3LYP level and with the 6-311++G** basis set.

Next we shall estimate the rate of intermolecular energy
transfer. The transfer rate for the resonance case can be
expressed as (see eq 3-18)

where the coupling is given by

Let us first consider a dimer cluster. In this example, we assume
a model system in which each water molecule has its own
normal modes and they are coupled with each other via the
interaction defined by eq 4-2.µbD

l in eq 4-2, for example, is
defined by eq (3-17) so that we make use of the calculated
geometry and dipole moment derivatives for the water mo-
nomer, and they are listed in Table 1 and Table 2. To estimate
the magnitude of eq 4-2, we further use the vacuum permit-
tivity 8.854 × 10-12 J-1 C2 m-1. The optimized structure of
the dimer is given in Table 3, and the distance between
the two oxygen atoms is separated byRO-O ) RDA ) 2.901 76
Å. If we choose a bending mode of 1602 cm-1 and place its
dipole moment derivatives on each oxygen atom with the
direction given in Table 4, the corresponding orientation
factor is thenΩDA ) -1.386 57 and the estimated value
for the interaction is given by|H′DA|/2πcp ) 3.549 71 cm-1.
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TABLE 2: Normal Modes and Transition Moment
Derivativea with Respect to Each Normal Mode

normal mode frequency/cm-1 ∂µx/∂Qi ∂µy/∂Qi ∂µz/∂Qi

Q1 (a1) 3819 9.2× 10-10 4.2× 10-9 -3.0
Q2 (a1) 1602 7.0× 10-10 2.4× 10-9 -8.2
Q3 (b2) 3924 -1.2× 10-8 -7.5 1.9× 10-8

a Unit of D/(Å amu)1/2.

TABLE 3: Optimized Geometry of Dimer

atom eq no. xa ya za

O 1 -0.006242 1.525404 0.000000
H 1a 0.909757 1.525404 0.000000
H 1b 0.035907 0.556437 0.000000
O 2 -0.006242 -1.376356 0.000000
H 2a -0.422895 -1.782687 0.767083
H 2b -0.422895 -1.782687 -0.767083

a Unit of Å.

TABLE 4: Unit Vectors a of Dipole Moment Derivatives
Originated at Each O Atom

O no. êx êy êz

1 0.81977 -0.572693 0.000000
2 -0.715913 -0.698177 0.004215

a ên ) (∂µbn/∂Ql)/[(∂µb/∂Ql)‚(∂µb/∂Ql)]1/2, wheren specifies the oxygen
atom.
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Suppose that∆ω ) 0 in eq 4-1,

If the dephasing rate constantγDA ) 1012 s-1, we find W )
2|H′DA/p|2(1/γDA) ) 8π2c23.549712(1/1012) ∼ 8.954 03× 1011

s-1 which is 1.116 82 ps.
Now we estimate the time constants for the intermolecular

energy transfer in two octamers (cube and bicyclic) in a similar
fashion. Figures 1 and 2 show the optimized structure of cube
and bicyclic octamers, respectively, that agree with Ohno’s
work.19 Table 5 lists the optimized molecular parameters for
the cube octamer. For the cube case, the total number of possible
two water molecule pair is 28. Table 6 lists the unit vectors of
the dipole moment derivatives originated at each O atom. For
the case in whichRO-O < 3 Å, we find that there are 12 water
molecule pairs. Table 7 summarizesRO-O, Ω, and the calculated
rate constants, and these values versus H2O pairs are plotted in
Figure 3. Here the numbers 1-8 specify the oxygen atoms listed
in Table 5. One can see from Figure 3 that there can be three
groups for the energy transfer mechanism: the first group
consisting of two water molecules with short distances around
2.68 Å and|Ω| values around 1.2, and the second group with
longer distances around 2.86 Å and larger|Ω| around 1.38, the
last group with similar distances as the second group and smaller
|Ω| values∼0.36. For the first group, the alignment of the two
water molecules in each pair is similar to that of the dimer given
in Table 1, and for the second group, the two water molecules
form a tilted dimer structure, but this alignment is more
preferable to have a larger value for|Ω|. In the last group, the
dimer structures are quite different from that listed in Table 1.
We also estimate the intermolecular energy transfer time
constants for molecular pairs whoseRO-O is larger than 3 Å.
Table 8 lists the calculated time constants. The shortest time
constant in this case is about 60 ps. The molecular pair in this
group is located diagonally either in each plane in the cube (e.g.,
1 T 3 pair) or in the cube (e.g., 1T 7 pair).

For the bicyclic octamer case, the time constants for the
intermolecular energy transfer taking place in pairs withRO-O

< 3 Å are also calculated and shown in Figure 4. In this case,
the time constants for the intermolecular energy transfer show
strong|Ω| dependence.

It may be informative to estimate the time constants of the
intermolecular energy transfer in the tetrahedral water cluster
whose structure is shown in Figure 5. The calculated values
are also plotted versus the water pair. If we look at the water

Figure 1. Structure of water cube octamer. The numbers correspond
to the oxygen molecules listed in Table 5.

Figure 2. Structure of water bicyclic octamer. Each number specifies
the oxygen molecule used in Figure 4.
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TABLE 5: Optimized Geometry of the Cube Octamer

atom eq no. Xa Ya Za

O 1 1.566303 1.449495 -1.285755
H 1a 1.642469 0.465981 -1.412737
H 1b 2.219554 1.861437 -1.859035
O 2 1.477277 -1.228116 -1.392212
H 2a 0.547244 -1.424396 -1.608627
H 2b 1.582434 -1.516535 -0.467514
O 3 -1.379417 -1.375764 -1.539816
H 3b -1.515428 -1.502382 -0.562028
H 3b -1.966234 -1.989406 -1.991442
O 4 -1.298728 1.485903 -1.308213
H 4a -0.346812 1.643307 -1.445290
H 4b -1.441147 0.568211 -1.602903
O 5 1.287805 1.214574 1.359794
H 5a 0.340021 1.421122 1.662674
H 5b 1.512659 1.500452 0.661773
O 6 -1.554271 1.386748 1.359794
H 6a -1.571839 1.521934 0.375568
H 6b -2.180900 2.006591 1.744949
O 7 -1.468370 -1.47477 1.132528
H 7a -1.647155 -0.557323 1.406315
H 7b -0.544209 -1.636833 1.39733
O 8 1.366881 -1.458804 1.467499
H 8a 1.944994 -1.880499 2.110213
H 8b 1.444504 -0.475781 1.599667

a Unit of Å.

TABLE 6: Unit Vectors a of Dipole Moment Derivatives
Originated at Each O Atom in the Cube Octamer

O no. êx êy êz

1 0.636658 -0.472214 -0.609656
2 -0.706978 -0.405819 0.579217
3 -0.629753 -0.645315 0.432411
4 0.679273 -0.638178 -0.362378
5 -0.587233 0.415327 -0.694738
6 -0.565406 0.659135 -0.495839
7 0.644368 0.61664 0.452266
8 0.572913 0.463705 0.675832

a ên ) (∂µbn/∂Q)/[(∂µbn/∂Q)‚(∂µbn/∂Q)]-1/2 wheren specifies the oxygen
atom.

TABLE 7: Calculated Time Constants for the
Intermolecular Energy Transfer in the Cube Octamer with
RO-O < 3 Å

RDA ) RO-O
a Ωb T ) 1/(W× 10-12)c

2 T 1 2.68120 -1.18936 0.944596
4 T 1 2.86535 -0.354928 15.8008
5 T 1 2.87400 -1.40118 1.03235
3 T 2 2.86431 -0.377116 13.9658
8 T 2 2.87112 -1.37431 1.06669
4 T 3 2.87216 -1.38538 1.05197
7 T 3 2.67566 -1.19086 0.930579
6 T 4 2.68205 -1.18375 0.955373
6 T 5 2.85468 -0.312932 19.8762
8 T 5 2.67633 -1.18819 0.936167
7 T 6 2.87181 -1.38303 1.05479
8 T 7 2.85501 -0.398997 12.235

a Unit of Å. b Calculated using eq 4-2.c Calculated using eq 4-3 and
unit of ps.
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molecule 2, there are 4 water pairs that consist of the nearest
neighbor water molecules. The respective calculated time
constants are 1.26 ps for the 1T 2 pair, 15.2 ps for the 2T 5
pair, 27.3 ps for the 2T 4 pair, and 44.0 ps for the 2T 3 pair.

According to the coupled oscillator model presented in section
3, to treat VER we need to have the information of cubic and
quartic anharmonic coupling constants. In our DFT calculations

of water clusters, this information has been obtained up to the
cluster of size 8. So, in principle, we should be able to perform
the quantum chemistry calculations of the rates of energy
transfer (see eqs 3-27, 3-31, and 3-34) and VER. For example,
from Figure 1 for the cube octamer we can determine how the
cluster is excited initially by the pumping laser (determined by
laser wavelength, pulse duration, and laser intensity). Each
excited state will evolve (or decay) and its dynamical process
can be described by using the coupled oscillator model, which
requires the information of cubic and quartic anharmonic
couplings.

Two types of VER have been reported.16,17 One is the VER
of VOH ) 3700 cm-1 into two quanta of 1650 cm-1. That is,
this type of VER belongs to three-vibron processesVll ′l′QlQl′

2.
There are a number of possibilities (i.e., paths) found in our
DFT calculations; the cubic anharmonic coupling constants
cover the range 0-90 cm-1 (see Appendix S7 in the Supporting
Information). Another type of VER is the so-called thermal-
ization. In our opinion the most probable processes will be the
VER of the 1650 cm-1 modes into two quanta of the vibrational
modes with frequencies smaller than 1000 cm-1. In this case,
the cubic anharmonic coupling constants cover the range 0-102
cm-1 (see Appendix S7 in the Supporting Information). From
the values of anharmonic coupling constants for VER in
comparison with the|H′DA| values for vibrational energy
transfer, the time scale of VER can also be estimated. In a future

Figure 3. Calculated time constants for the intermolecular energy
transfer in the cube octamer withRO-O < 3 Å.

TABLE 8: Calculated VET Time Constants for the
Intermolecular Energy Transfer in the Cube Octamer with
RO-O > 3 Å

RDA ) RO-O
a Ωb T ) 1/(W× 10-12)c

3 T 1 4.08949 -0.112493 1329.4
4 T 2 3.88319 -0.105825 1506.79
5 T 2 3.84032 -0.842586 66.6621
5 T 3 4.84398 -0.234159 272.646
5 T 4 3.87550 0.229208 234.729
6 T 1 4.09156 0.00584479 337725.
6 T 2 4.85812 -0.86013 63.9108
6 T 3 4.00871 0.213419 272.517
7 T 1 4.85887 -0.878554 60.1967
7 T 2 3.88741 -0.24601 246.614
7 T 4 3.84078 -0.125602 1041.53
7 T 5 3.87507 0.231926 226.547
8 T 1 4.00979 0.0306694 12274.4
8 T 3 4.07345 -0.8504 64.3896
8 T 4 4.84576 0.145168 577.869
8 T 6 4.07945 -0.0778607 2734.42

a Unit of Å. b Calculated using eq 4-2.c Calculated using eq 4-3 and
unit of ps.

Figure 4. Calculated time constants for the intermolecular energy
transfer in the bicyclic octamer withRO-O < 3 Å.

Figure 5. Structure and calculated time constants for the intermolecular
energy transfer of the tetrahedral water cluster.
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paper, we shall report the detailed first-principle calculations
of vibrational spectroscopy, VER, and vibrational energy
transfer.

5. Conclusion

In this paper, using the density matrix method, we have
developed a theory of time-resolved SFG that takes into account
the dynamical behaviors of both population and coherence of
the surface system. To study the vibrational dynamics of surface
waters, we limit ourselves to discuss the case of time-resolved
vibrational IR-UV SFG. To treat the VER, vibrational energy
transfer, and vibrational spectroscopy of liquid water, we have
used the coupled oscillator model in which the basis set chosen
is based on the diabatic approximation to separate the system
oscillators and bath oscillators. In the harmonic oscillator
approximation, vibrational energy transfer, VER, and vibrational
spectroscopy can be calculated by including cubic anharmonic
couplings that are obtained by DFT calculations. In this way
we have demonstrated that it is possible to carry out the first-
principle calculations of vibrational spectroscopy and dynamics
of clusters.
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